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1. INTRODUCTION

The sun and ocean undergo regular changes on regular and predictable time
frames. Temperatures likewise have exhibited changes that are cyclical. Sir
Gilbert Walker was generally recognized as the first to find large-scale
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oscillations in atmospheric variables. As early as 1908, while on a mission to
explain why the Indian monsoon sometimes failed, he assembled global surface
data and did a thorough correlation analysis.

On careful interpretation of statistical data, Walker and Bliss (1932) were
able to identify three pressure oscillations:

1. A flip flop on a big scale between the Pacific Ocean and the Indian Ocean
which he called the Southern Oscillation (SO).

2. A second oscillation, on a much smaller scale, between the Azores and Ice-
land, which he named the North Atlantic Oscillation.

3. A third oscillation between areas of high and low pressure in the North
Pacific, which Walker called the North Pacific Oscillation.

Walker further asserted that the SO is the predominant oscillation, which
had a tendency to persist for at least 1e2 seasons. He went so far in 1924 as to
suggest the SOI had global weather impacts and might be useful in predicting
the world’s weather. He was ridiculed by the scientific community at the time
for these statements. Not until four decades later was the Southern Oscillation
recognized as a coupled atmosphere pressure and ocean temperature
phenomena (Bjerknes, 1969) and more than two decades further before it was
shown to have statistically significant global impacts and could be used to
predict global weather/climate, at times many seasons in advance. Walker was
clearly a man ahead of his time.

Global temperatures, ocean-based teleconnections, and solar variances
interrelate with each other. A team of mathematicians (Tsonis et al., 2003,
2007), led by Dr. Anastasios Tsonis, developed a model suggesting that known
cycles of the Earth’s oceansdthe Pacific Decadal Oscillation, the North
Atlantic Oscillation, El Nino (Southern Oscillation), and the North Pacific
Oscillationdall tend to synchronize with each other. The theory is based on
a branch of mathematics known as Synchronized Chaos. The model predicts
the degree of coupling to increase over time, causing the solution to “bifurcate”,
or split. Then, the synchronization vanishes. The result is a climate shift.
Eventually the cycles begin to synchronize again, causing a repeating pattern of
warming and cooling, along with sudden changes in the frequency and strength
of El Nino events. They show how this has explained the major shifts that have
occurred including 1913, 1942, and 1978. These may be in the process of
synchronizing once again with its likely impact on climate very different from
what has been observed over the last several decades.

2. THE SOUTHERN OSCILLATION INDEX (SOI)

The Southern Oscillation Index (SOI) is the oldest measure of large-scale
fluctuations in air pressure occurring between the western and eastern tropical
Pacific (i.e., the state of the Southern Oscillation) during El Nino and La Nina
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episodes (Walker et al., 1932). Traditionally, this index has been calculated
based on the differences in air pressure anomaly between Tahiti and Darwin,
Australia. In general, smoothed time series of the SOI correspond very well
with changes in ocean temperatures across the eastern tropical Pacific. The
negative phase of the SOI represents below-normal air pressure at Tahiti and
above-normal air pressure at Darwin. Prolonged periods of negative SOI values
coincide with abnormally warm ocean waters across the eastern tropical Pacific
typical of El Nino episodes. Prolonged periods of positive SOI values coincide
with abnormally cold ocean waters across the eastern tropical Pacific typical of
La Nina episodes.

As an atmospheric observation-based measure, SOI is subjected not only to
underlying ocean temperature anomalies in the Pacific but also intra-seasonal
oscillations, like the MaddeneJulian Oscillation (MJO). The SOI often shows
month-to-month-swings, even if the ocean temperatures remain steady due to
these atmospheric waves. This is especially true in weaker El Nino or La Nina
events, as well as La Nadas (neutral ENSO) conditions. Indeed, even week-to-
week changes can be significant. For that reason, other measures are often
preferred.

2.1. Nino 3.4 Anomalies

On February 23, 2005, NOAA announced that the NOAA National Weather
Service, the Meteorological Service of Canada and the National Meteorolog-
ical Service of Mexico reached a consensus on an index and definitions for El
Nino and La Nina events (also referred to as the El Nino Southern Oscillation or
ENSO). Canada, Mexico, and the United States all experience impacts from El
Nino and La Nina.

The index was called the ONI and is defined as a 3-month average of sea
surface temperature departures from normal for a critical region of the equa-
torial Pacific (Niño 3.4 region; 120We170W, 5Ne5S). This region of the
tropical Pacific contains what scientists call the “equatorial cold tongue”,
a band of cool water that extends along the equator from the coast of South
America to the central Pacific Ocean. North America’s operational definitions
for El Nino and La Nina, based on the index, are:

El Nino: A phenomenon in the equatorial Pacific Ocean characterized by
a positive sea surface temperature departure from normal (for the
1971e2000 base period) in the Niño 3.4 region greater than or equal in
magnitude to 0.5 !C (0.9 !F), averaged over three consecutive months.
La Nina: A phenomenon in the equatorial Pacific Ocean characterized by
a negative sea surface temperature departure from normal (for the
1971e2000 base period) in the Niño 3.4 region greater than or equal in
magnitude to 0.5 !C (0.9 !F), averaged over three consecutive months.
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3. MULTIVARIATE ENSO INDEX (MEI)

Wolter (1987) attempted to combine oceanic and atmospheric variables to track
and compare ENSO events. He developed the Multivariate ENSO Index (MEI)
using the six main observed variables over the tropical Pacific. These six
variables are: sea-level pressure (P), zonal (U), and meridional (V) components
of the surface wind, sea surface temperature (S), surface air temperature (A),
and total cloudiness fraction of the sky (C).

The MEI is calculated as the first unrotated Principal Component (PC) of all
six observed fields combined. This is accomplished by normalizing the total
variance of each field first, and then performing the extraction of the first PC on
the co-variance matrix of the combined fields (Wolter and Timlin, 1993).

In order to keep the MEI comparable, all seasonal values are standardized
with respect to each season and to the 1950e1993 reference period. Negative
values of the MEI represent the cold ENSO phase (La Nina) while positive MEI
values represent the warm ENSO phase (El Nino). Figure 2 is a plot of the three
indices since 2000 (Wolter and Timlin, 1993).

NINO 34 is well correlated with the MEI. The SOI is much more variable
month-to-month than the MEI and NINO 34. The MEI and NINO are more
reliable determinants of the true state of ENSO, especially in weaker ENSO
events.
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FIGURE 1 Correlation of the Great Pacific Climate Shift and the Pacific Decadal Oscillation.
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4. THE PACIFIC DECADAL OSCILLATION (PDO)

The first hint of a Pacific basin-wide cycle was the recognition of a major
regime change in the Pacific in 1977 that became to known as the Great Pacific
Climate Shift (Fig. 1). Later, this shift was shown to be part of a cyclical regime
change with decadal-like ENSO variability (Zhang et al., 1996, 1997; Mantua
et al., 1997) and given the name Pacific Decadal Oscillation (PDO) by fisheries
scientist Steven Hare (1996) while researching connections between Alaska
salmon production cycles and Pacific climate.

Mantua et al. (1997) found the “Pacific Decadal Oscillation” (PDO) is
a long-lived El Nino-like pattern of Pacific climate variability. While the two
climate oscillations have similar spatial climate fingerprints, they have very
different behavior in time. Two main characteristics distinguish PDO from El
Nino/Southern Oscillation (ENSO): (1) 20th century PDO “events” persisted
for 20-to-30 years, while typical ENSO events persisted for 6e18 months; (2)
the climatic fingerprints of the PDO are most visible in the North Pacific/North
American sector, while secondary signatures exist in the tropics e the opposite
is true for ENSO. Note in Figures 1 and 2 how CO2 showed no change during
this PDO shift, suggesting it was unlikely to have played a role. Figures 3 and 4
show average annual PDO values.

A study by Gershunov and Barnett (1998) showed that the PDO has
a modulating effect on the climate patterns resulting from ENSO. The climate
signal of El Nino is likely to be stronger when the PDO is highly positive;

FIGURE 2 Atmospheric CO2

showed no change across the
Great Pacific Shift so could not
have been the cause of it.
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conversely the climate signal of La Nina will be stronger when the PDO is
highly negative. This does not mean that the PDO physically controls ENSO,
but rather that the resulting climate patterns interact with each other. The
annual PDO and ENSO (Multivariate ENSO Index) track well since 1950.

5. FREQUENCY AND STRENGTH OF ENSO AND THE PDO

Warm PDOs are characterized by more frequent and stronger El Ninos than
La Ninas. Cold PDOs have the opposite tendency. Figure 4 shows how well one

2.5

2

1.5

1

0.5
0

–0.5

–1

–1.5

–2

–2.5
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Year

PDO

Poly. (PDO)

Annual Average PDO

CoolCool Cool WarmWarm

FIGURE 3 Annual average PDO 1900e2009. Note the multidecadal nature of the cycle with
a period of approximately 60 years.

FIGURE 4 Annual average PDO and MEI (Multivariate ENSO Index) from 1950 to 2007 clearly
correlate well. Note how the ENSO events amplify or diminish the favored PDO state.
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ENSO measure, Wolter’s MEI, correlates with the PDO. Mclean et al. (2009)
showed that the mean monthly global temperature (GTTA) using the University
of Alabama Huntsville MSU temperatures corresponds in general terms with
the another ENSO measure, the Southern Oscillation Index (SOI) of 7 months
earlier. The SOI is a rough indicator of general atmospheric circulation and thus
global climate change.

Temperatures also follow suit (Fig. 5). El Ninos and the warm mode PDOs
have similar land-based temperature patterns, as do cold-mode PDOs and La
Ninas.

Strong similarity exists between PDO and ENSO ocean basin patterns.
Land temperatures also are very similar between the PDO warm modes and El
Ninos and the PDO cold modes and La Ninas. Not surprisingly, El Ninos occur
more frequently during the PDO warm phase and La Ninas during the PDO
cold phase. It maybe that ocean circulation shifts drive it for decades favoring
El Ninos which leads to a PDO warm phase or La Ninas and a PDO cold phase
(the proverbial chicken and egg), but the 60-year cyclical nature of this cycle is
well established (Fig. 6).

About 1947, the PDO (Pacific Decadal Oscillation) switched from its warm
mode to its cool mode and global climate cooled from then until 1977, despite
the sudden soaring of CO2 emissions. In 1977, the PDO switched back from its
cool mode to its warm mode, initiating what is regarded as ‘global warming’
from 1977 to 1998 (Fig. 7).

During the past century, global climates have consisted of two cool periods
(1880e1915 and 1945e1977) and two warm periods (1915e1945 and
1977e1998). In 1977, the PDO switched abruptly from its cool mode, where it
had been since about 1945, into its warm mode and global climate shifted from
cool to warm (Miller et al., 1994). This rapid switch from cool to warm has
become to known as “The Great Pacific Climatic Shift” (Fig. 1). Atmospheric

FIGURE 5 PDO and ENSO compared.

167Chapter j 5 Relationship of Multidecadal Global Temperatures



FIGURE 7 Difference in average sea surface temperatures between the decade prior to the GPCS
and the decade after the GPCS. Yellow and green colors indicate warming of the NE Pacific off the
coast of North America relative to what it had been from 1968 to 1977. Note the cooling in the west
central North Pacific.

FIGURE 6 Note how during the PDO cold phases, La Nina dominate (14e7 in the 1947e1977
cold phase) and 5e3 in the current, while in the warm phase from 1977 to 1998, the El Ninos had
a decided frequency advantage of 10e3.
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CO2 showed no unusual changes across this sudden climate shift and was clearly
not responsible for it. Similarly, the global warming from ~1915 to ~1945 could
not have been caused by increased atmospheric CO2 because that time preceded
the rapid rise of CO2, and when CO2 began to increase rapidly after 1945, 30
years of global cooling occurred (1945e1977). The two warm and two cool
PDO cycles during the past century (Fig. 3) have periods of about 25e30 years.

The PDO flipped back to the cold mode in 1999. The change can be seen
with this sea surface temperature difference image of the decade after the GPCS
minus the decade before the GPCS (Fig. 8).

Verdon and Franks (2006) reconstructed the positive and negative phases of
PDO back to A.D. 1662 based on tree ring chronologies from Alaska, the
Pacific Northwest, and subtropical North America as well as coral fossil from
Rarotonga located in the South Pacific. They found evidence for this cyclical
behavior over the whole period (Fig. 9).

SSTA Change 1999-2008 from 1989 to 1998 
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FIGURE 8 Sea surface temperature difference image of the decade after the GPCS minus the
decade before the GPCS. Note the strong cooling in the eastern Pacific and the warming of the west
central North Pacific.

FIGURE 9 Verdon and Franks (2006) reconstructed the PDO back to 1662 showing cyclical
behavior over the whole period.
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6. CORRELATION OF THE PDO AND GLACIAL
FLUCTUATIONS IN THE PACIFIC NORTHWEST

The ages of moraines downvalley from the present Deming glacier on Mt.
Baker (Fuller, 1980; Fuller et al., 1983) match the ages of the cool periods in the
Greenland ice core. Because historic glacier fluctuations (Harper, 1993) coin-
cide with global temperature changes and PDO, these earlier glacier fluctua-
tions could also well be due to oscillations of the PDO (Fig. 10).

Glaciers on Mt. Baker, WA show a regular pattern of advance and retreat
(Fig. 11) which matches the Pacific Decadal Oscillation (PDO) in the NE
Pacific Ocean. The glacier fluctuations are clearly correlated with, and probably
driven by, changes in the PDO. An important aspect of this is that the PDO
record extends to the about 1900 but the glacial record goes back many years
and can be used as a proxy for older climate changes.

7. ENSO VS. TEMPERATURES

Douglass and Christy (2008) compared the NINO 34 region anomalies to
the tropical UAH lower troposphere and showed a good agreement, with
some departures during periods of strong volcanism. During these volcanic
events, high levels of stratospheric sulfate aerosols block incoming solar
radiation and produce multi-year cooling of the atmosphere and oceans.
A similar comparison of UAH global lower tropospheric data with the MEI
Index also shows good agreement, with some departure during periods of major

FIGURE 10 Ice marginal deposits (moraines) showing fluctuations of the Deming glacier,
Mt. Baker, WA corresponding to climatic warming and cooling in Greenland ice cores.
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volcanism in the early 1980s and 1990s. Alaskan temperatures clearly show
discontinuities associated with changes in the PDO.

8. THE ATLANTIC MULTIDECADAL OSCILLATION (AMO)

Like the Pacific, the Atlantic exhibits multidecadal tendencies and a charac-
teristic tripole structure (Figs. 12, 13). For a period that averages about 30
years, the Atlantic tends to be in what is called the warm phase with warm
temperatures in the tropical North Atlantic and far North Atlantic and relatively
cool temperatures in the central (west central). Then the ocean flips into the
opposite (cold) phase with cold temperatures in the tropics and far North
Atlantic and a warm central ocean. The AMO (Atlantic sea surface tempera-
tures standardized) is the average anomaly standardized from 0 to 70N. The
AMO has a period of 60 years maximum to maximum and minimum to
minimum.

FIGURE 11 Correlation of glacial fluctuations, global temperature changes, and the Pacific
Decadal Oscillation.
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9. NORTH ATLANTIC OSCILLATION, THE ARCTIC
OSCILLATION, AND THE AMO

The North Atlantic Oscillation (NAO), first found by Walker in the 1920s, is
the northesouth flip flop of pressures in the eastern and central North Atlantic
(Walker and Bliss, 1932). The difference of normalized MSLP anomalies
between Lisbon, Portugal, and Stykkisholmur, Iceland has become the widest

FIGURE 12 AMO annual mean (STD) showing a similar 60e70-year cycle as the PDO but with
a lag of about 15 years to the PDO.
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used NAO index and extends back in time to 1864 (Hurrell, 1995), and to 1821
if Reykjavik is used instead of Stykkisholmur and Gibraltar instead of Lisbon
(Jones et al., 1997). Hanna et al. (2003) and Hanna et al. (2006) showed
how these cycles in the Atlantic sector play a key role in temperature varia-
tions in Greenland and Iceland. Kerr (2000) identified the NAO and AMO
(Fig. 13) as key climate pacemakers for large-scale climate variations over the
centuries.

The Arctic Oscillation (also known as the Northern Annular Mode Index
(NAM)) is defined as the amplitude of the pattern defined by the leading
empirical orthogonal function of winter monthly mean NH MSLP anomalies
poleward of 20!N (Thompson and Wallace, 1998, 2000). The NAM/Arctic
Oscillation (AO) is closely related to the NAO.

Like the PDO, the NAO and AO tend to be predominantly in one mode or
the other for decades at a time, although since, like the SOI, it is a measure
of atmospheric pressure and subject to transient features, it tends to vary
much more from week-to-week and month-to-month. All we can state is that
an inverse relationship exists between the AMO and NAO/AO decadal
tendencies. When the Atlantic is cold (AMO negative), the AO and NAO
tend more often to the positive state, when the Atlantic is warm, on the other
hand, the NAO/AO tend to be more often negative. The AMO tri-pole of
warmth in the 1960s below was associated with a predominantly negative
NAO and AO while the cold phase was associated with a distinctly positive
NAO and AO in the 1980s and early 1990s (Figs. 14, 15). A lag of a few
years occurs after the flip of the AMO and the tendencies appear to be
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FIGURE 14 Correlation of the AMO with annual surface temperatures.
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greatest at the end of the cycle. This may relate to timing of the maximum
warming or cooling in the North Atlantic part of the AMO or even the PDO/
ENSO interactions. The PDO typically leads the AMO by 10e15 years. The
relationship is a little more robust for the cold (negative AMO) phase than
for the warm (positive) AMO. There tends to be considerable intra-seasonal
variability of these indices that relate to other factors (stratospheric warming
and cooling events that are correlated with the Quasi-Biennial Oscillation or
QBO for example).

10. SYNCHRONIZED DANCE OF THE TELECONNECTIONS

The record of natural climate change and the measured temperature record
during the last 150 years gives no reason for alarm about dangerous warming
caused by human CO2 emissions. Predictions based on past warming and
cooling cycles over the past 500 years accurately predicted the present cooling
phase (Easterbrook, 2001, 2005, 2006a,b, 2007, 2008a,b,c) and the establish-
ment of cool Pacific sea surface temperatures confirms that the present cool
phase will persist for several decades.

Latif and his colleagues at Leibniz Institute at Germany’s Kiel University
predicted the new cooling trend in a paper published in 2009 and warned of it
again at an IPCC conference in Geneva in September 2009.
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FIGURE 15 Difference in sea surface temperatures 1996e2004 from 1986 to 1995. It shows the
evolution to the warm Atlantic Multidecadal Oscillation.
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‘A significant share of the warming we saw from 1980 to 2000 and at earlier periods in

the 20th Century was due to these cycles e perhaps as much as 50 per cent. They have

now gone into reverse, so winters like this one will become much more likely. Summers

will also probably be cooler, and all this may well last two decades or longer. The

extreme retreats that we have seen in glaciers and sea ice will come to a halt. For the

time being, global warming has paused, and there may well be some cooling.’

According to Latif and his colleagues (Latif and Barnett, 1994; Latif et al.,
2009) this in turn relates to much longer-term shifts e what are known as the
Pacific andAtlantic ‘multi-decadal oscillations’ (MDOs). For Europe, the crucial
factor here is the temperature of the water in the middle of the North Atlantic,
now several degrees below its average when the world was still warming.

Prof. Anastasios Tsonis, head of the University of Wisconsin Atmospheric
Sciences Group, has shown (2007) that these MDOs move together in
a synchronized way across the globe, abruptly flipping the world’s climate from
a ‘warm mode’ to a ‘cold mode’ and back again in 20e30-year cycles.

‘They amount to massive rearrangements in the dominant patterns of the weather,’ he

said yesterday, ‘and their shifts explain all the major changes in world temperatures

during the 20th and 21st Centuries. We have such a change now and can therefore expect

20 or 30 years of cooler temperatures.’

The period from 1915 to 1940 saw a strong warm mode, reflected in rising
temperatures, but from 1940 until the late 1970s, the last MDO cold-mode era,
the world cooled, despite the fact that carbon dioxide levels in the atmosphere
continued to rise. Many of the consequences of the recent warm mode were also
observed 90 years ago. For example, in 1922, the Washington Post reported that
Greenland’s glaciers were fast disappearing, while Arctic seals were ‘finding
the water too hot’. The Post interviewed Captain Martin Ingebrigsten, who had
been sailing the eastern Arctic for 54 years: ‘He says that he first noted warmer
conditions in 1918, and since that time it has gotten steadily warmer. Where
formerly great masses of ice were found, there are now moraines, accumula-
tions of earth and stones. At many points where glaciers formerly extended into
the sea they have entirely disappeared. As a result, the shoals of fish that used to
live in these waters had vanished, while the sea ice beyond the north coast of
Spitsbergen in the Arctic Ocean had melted. Warm Gulf Stream water was still
detectable within a few hundred miles of the Pole.’

In contrast, 56% of the surface of the United States was covered by snow.
‘That hasn’t happened for several decades,’ Tsonis pointed out. ‘It just isn’t true
to say this is a blip. We can expect colder winters for quite a while.’ He recalled
that towards the end of the last cold mode, the world’s media were preoccupied
by fears of freezing. For example, in 1974, a Time magazine cover story pre-
dicted ‘Another Ice Age’, saying: ‘Man may be somewhat responsible e as
a result of farming and fuel burning [which is] blocking more and more sunlight
from reaching and heating the Earth.’

175Chapter j 5 Relationship of Multidecadal Global Temperatures



FIGURE 16 NASA GISS version of NCDC USHCN version 2 vs. PDOþAMO. The mutlide-
cadal cycles with periods of 60 years match the USHCN warming and cooling cycles. Annual
temperatures end at 2007. With an 11-year smoothing of the temperatures and PDOþAMO to
remove any effect of the 11-year solar cycles, gives an even better correlation with an r2 of 0.85.
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FIGURE 17 With 22 point smoothing, the correlation of U.S. temperatures and the ocean multi-
decadal oscillations is clear with an r2 of 0.85. Figure 18 shows the AMO/PDO regression fit to
USHCN version 2. The PDO/AMOworks well in predicting temperatures (Fig. 19). Figure 20 shows
the difference in U.S. annual mean temperatures for USHCN version 2 minus USHCN version 1.
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Tsonis observed ‘Perhaps we will see talk of an ice age again by the early
2030s, just as the MDOs shift once more and temperatures begin to rise.’
Although the two indices (PDO and AMO) are derived in different ways, they
both represent a pattern of sea surface temperatures, a tripole with warm in the
high latitudes and tropics and colder in between especially west or vice versa.
In both cases, the warm modes were characterized by general global warmth
and the cold modes with general broad climatic cooling though each with
though with regional variations. I normalizing and adding the two indices
makes them more comparable. A positive AMOþ PDO should correspond to
an above normal temperature and the negative below normal. Indeed that is the
case for the US temperatures (NCDC USHCN v2) as shown in Fig. 16.

Correlation of U.S. temperatures and the ocean multidecadal oscillations
gives an r2 of 0.85 (Fig. 17). In Figures 18 and 19 the AMO/PDO was used to
predict US temperatures using multiple regression approach. The results
showed excellent results with some divergence near the end of the period.

FIGURE 18 The AMO/PDO regression fit to USHCN version 2.

FIGURE 19 Using the PDO/AMO to predict temperatures works well here with some departure
after around 2000.
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The plot (Fig. 20) of the difference between version 1 and version 2 suggests
the latter as the likely cause. In version 2, the urban adjustment was removed.
Note that the upward adjustment of the 1998e2005 temperatures by as much as
0.15 !F is unexplained.

11. SHORT-TERM WARM/COOL CYCLES FROM
THE GREENLAND ICE CORE

Variation of oxygen isotopes in ice from Greenland ice cores is a measure of
temperature. Most atmospheric oxygen consists of 16O but a small amount
consists of 18O, an isotope of oxygen that is somewhat heavier. When water
vapor (H2O) condenses from the atmosphere as snow, it contains a ratio of
16O/18O that reflects the temperature at that time. When snow falls on a glacier
and is converted to ice, it retains an isotopic ‘fingerprint’ of the temperature
conditions at the time of condensation. Measurement of the 16O/18O ratios in
glacial ice hundreds or thousands of years old allows reconstruction of past
temperature conditions (Stuiver and Grootes, 2000; Stuiver and Brasiunas, 1991,
1992; Grootes and Stuiver, 1997; Stuiver et al., 1995; Grootes et al., 1993). High
resolution ice core data show that abrupt climate changes occurred in only a few
years (Steffensen et al., 2008). The GISP2 ice core data of Stuiver and Grootes
(2000) can be used to reconstruct temperature fluctuations in Greenland over the
past 500 years (Fig. 21). Figure 21 shows a number of well-known climatic
events. For example, the isotope record shows the Maunder Minimum, the
Dalton Minimum, the 1880e1915 cool period, the 1915 to ~1945 warm period,
and the ~1945 to 1977 cool period, as well as many other cool and warm
periods. Temperatures fluctuated between warm and cool at least 22 times

FIGURE 20 The difference in U.S. annual mean temperatures for USHCN version 2 minus
USHCN version 1. The elimination of the urbanization adjustment led to a hard-to-explain spike in
the 1997e2005 time period.

178 PART j III The Role of Oceans



between 1480 A.D. and 1950 (Fig. 21). None of the warming periods could have
possibly been caused by increased CO2 because they all preceded rising CO2.

Only one out of all of the global warming periods in the past 500 years
occurred at the same time as rising CO2 (1977e1998). About 96% of the warm
periods in the past 500 years could not possibly have been caused by rise of
CO2. The inescapable conclusion of this is that CO2 is not the cause of global
warming. The Greenland ice core isotope record matches climatic fluctuations
recorded in alpine glacier advances and retreats.

12. WHERE ARE WE HEADED DURING THE COMING
CENTURY?

The cool phase of PDO is now entrenched. We have shown how the two ocean
oscillations drive climate shifts. The PDO leads the way and its effect is later
amplified by the AMO. Each of this has occurred in the past century, global
temperatures have remained cool for about 30 years.

No statistically significant global warming has taken place since 1998
(Fig. 22), and cooling has occurred during the past several years (Hanna and
Cappelen, 2003). Avery likely reason for global cooling over the past decade is
the switch of the Pacific Ocean from its warm mode (where it has been from
1977 to 1998) to its cool mode in 1999. Each time this has occurred in the past
century, global temperatures have remained cool for about 30 years. Thus, the
current sea surface temperatures not only explain why we have had stasis or
global cooling for the past 10 years, but also should assure that cooler
temperatures will continue for several more decades. There will be brief
bounces upwards with periodic El Ninos, as we have seen in late 2009 and early
2010, but they will give way to cooling as the favored La Nina states returns.
With a net La Nina tendency, the net result should be cooling.

FIGURE 21 Cyclic warming and cooling trends in the past 500 years (plotted from GISP2 data,
Stuiver and Grootes, 2000).
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12.1. Predictions Based on Past Climate Patterns

The past is the key to understanding the future. Past warming and cooling cycles
over the past 500 years were used by Easterbrook (2001, 2005, 2006a,b, 2007,
2008a,b,c) to accurately predict the cooling phase that is now happening.
Establishment of cool Pacific sea surface temperatures since 1999 indicates that
the cool phase will persist for the next several decades. We can look to past
natural climatic cycles as a basis for predicting future climate changes. The
climatic fluctuations over the past few hundred years suggest ~30-year climatic
cycles of global warming and cooling, on a general warming trend from the Little
Ice Age cool period. If the trend continues as it has for the past several centuries,
global temperatures for the coming century might look like those in Fig. 23. The

FIGURE 22 UAH globally averaged lower atmospheric temperatures.

FIGURE 23 Using past behavior of the PDO to predict future.
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left side of Fig. 23 is the warming/cooling history of the past century. The right
side of the graph shows that we have entered a global cooling phase that fits the
historic pattern very well. The switch to the PDO cool mode to its cool mode
virtually assures cooling global climate for several decades.

Three possible projections are shown in Fig. 24: (1) moderate cooling
(similar to the 1945e1977 cooling); (2) deeper cooling (similar to the
1945e1977 cooling); or (3) severe cooling (similar to the 1790e1830 cooling).
Only time will tell which of these will be the case, but at the moment, the sun is
behaving very similar to the Dalton Minimum (sunspot cycles 4/5), which was
a very cold time. This is based on the similarity of sun spot cycle 23 to cycle 4
(which immediately preceded the Dalton Minimum).

As the global climate and solar variation reveals themselves in a way not
seen in the past 200 years, we will surely attain a much better understanding of
what causes global warming and cooling. Time will tell. If the climate
continues its ocean cycle cooling and the sun behaves in a manner not wit-
nessed since 1800, we can be sure that climate changes are dominated by the
sun and sea and that atmospheric CO2 has a very small role in climate changes.
If the same climatic patterns, cyclic warming and cooling, that occurred over
the past 500 years continue, we can expect several decades of moderate to
severe global cooling.
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